miRNA malfunction causes spinal motor neuron disease.

نویسندگان

  • Sharon Haramati
  • Elik Chapnik
  • Yehezkel Sztainberg
  • Raya Eilam
  • Raaya Zwang
  • Noga Gershoni
  • Edwina McGlinn
  • Patrick W Heiser
  • Anne-Marie Wills
  • Itzhak Wirguin
  • Lee L Rubin
  • Hidemi Misawa
  • Clifford J Tabin
  • Robert Brown
  • Alon Chen
  • Eran Hornstein
چکیده

Defective RNA metabolism is an emerging mechanism involved in ALS pathogenesis and possibly in other neurodegenerative disorders. Here, we show that microRNA (miRNA) activity is essential for long-term survival of postmitotic spinal motor neurons (SMNs) in vivo. Thus, mice that do not process miRNA in SMNs exhibit hallmarks of spinal muscular atrophy (SMA), including sclerosis of the spinal cord ventral horns, aberrant end plate architecture, and myofiber atrophy with signs of denervation. Furthermore, a neurofilament heavy subunit previously implicated in motor neuron degeneration is specifically up-regulated in miRNA-deficient SMNs. We demonstrate that the heavy neurofilament subunit is a target of miR-9, a miRNA that is specifically down-regulated in a genetic model of SMA. These data provide evidence for miRNA function in SMN diseases and emphasize the potential role of miR-9-based regulatory mechanisms in adult neurons and neurodegenerative states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drawing Word co-occurrence map of Spinal Muscular Atrophy disease

Introduction:  The purpose of this article is to evaluate the status of articles in the field of Spinal Muscular Atrophy According to the Scientometrics indices Word co-occurrence map of this field . Methods: The present study is an applied one with a quantitative approach and a descriptive approach. It has been done using scientometrics and the co-occurrence words analysis technique. Document...

متن کامل

miRNA in spinal muscular atrophy pathogenesis and therapy

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by the selective death of lower motor neurons in the brain stem and spinal cord. SMA is caused by mutations in the survival motor neuron 1 gene (SMN1), leading to the reduced expression of the full-length SMN protein. microRNAs (miRNAs) are small RNAs that regulate post-transcriptional gene expressio...

متن کامل

An Optimized Sponge for microRNA miR-9 Affects Spinal Motor Neuron Development in vivo

The specification of motor neuron (MN) subtypes and columnar organization in developing spinal cord is controlled by multiple transcription factors. FoxP1 drives specification of lateral motor neuron (LMN) subtypes, and we demonstrated in our previous work that FoxP1 expression levels are regulated by the microRNA miR-9. Here we show that ectopic FoxP1 expression in the chick spinal cord can re...

متن کامل

The role of miRNA in motor neuron disease

microRNA is a subset of endogenous non-coding RNA. It binds to partially complementary sequences in mRNAs and inhibits mRNA translation by either blocking translational machinery or degrading mRNAs. It is involved in various cellular processes including cell cycle, development, metabolism, and synaptic plasticity. Dysregulation of miRNA expression and function is reported in various diseases in...

متن کامل

Spinal Muscular Atrophy: A Short Review Article

Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 29  شماره 

صفحات  -

تاریخ انتشار 2010